Maximal amenability of the generator subalgebra in q-Gaussian von Neumann algebras
Published in Journal of Operator Theory, 2018
Recommended citation: Parekh S., Shimada K. & Wen, C.(2018). Maximal amenability of the generator subalgebra in *q*-Gaussian von Neumann algebras, Journal of Operator Theory, 80(1), pp. 125-152.
http://www.mathjournals.org/jot/2018-080-001/2018-080-001-007.html
We develop a structural theorem for the q-Gaussian algebras, namely, we construct a Riesz basis for the q-Fock space in the spirit of Radulescu. As an application, we show that the generator subalgebra is maximal amenable inside the q-Gaussian von Neumann algebra for any real number q with absolute value less than 1/9.